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Abstract

We expand upon the solvable model for the microwave instability in an electron storage ring as proposed in Wang
(Phys. Rev. E 58 (1998) 984). The Vlasov}Maxwell equations are reduced to an integral eigenvalue problem similar to
that which arises in the Karhunen}LoeH ve expansion theory for stochastic processes (Goodman, Statistical Optics, Wiley,
New York, 1985). We derive "rst- and second-order correlation functions for the electron beam line density for the
microwave instability. Using a set of coherent modes the correlation functions are diagonalized. A relationship between
the "rst- and second-order correlation functions is obtained and it is shown to be similar to that of the Hanbury-Brown
Twiss experiment (Born and Wolf, Principles of Optics, 6th Edition, Pergamon press, New York, 1980; Loudon, The
Quantum Theory of Light, Clarendon press, Oxford, 1983). We obtain an expression for the Wigner distribution in terms
of the "rst-order correlation function and relate this to the power in the electric "eld. We introduce an entropy-like
quantity to characterize the coherence of the instability. ( 2001 Elsevier Science B.V. All rights reserved.

PACS: 29.27.Bd
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1. Introduction

It has long been known [1,2] that the coherent
microwave oscillation excited by a broadband im-
pedance can be approximately characterized by
a localized modulation function

sin[(b#1/2)(/!/
#
)]

sin[(/!/
#
)/2]

where /
#

is any real number, !n4/
#
(n, indic-

ating the location inside the bunch where the co-

herent mode `ca is centered, and b is inversely
proportional to the wakelength of the impedance.
Based on the intuition suggested by this example,
a solvable model for the microwave instability has
recently been proposed [3].1 The model consists of
a bunched electron beam interacting with a con-
stant impedance centered at the wave number
n"n

0
and with a bandwidth of *n"2b#1. The

usual constraint

j
0
;l

W
;p (1)

for microwave instability is understood, where p is
the bunch length, j

0
"2p/n

0
is the wavelength of
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the carrier wave and l
W
"4p/(2b#1) is the

wakelength characterizing the impedance; j
0
,

l
W

and p are all in units of radians.
For our model of a storage ring with periodic

boundary conditions, together with an impedance
which is band-limited, the number of independent
coherent modes is "nite. A coherent mode of the
beam interacting with the surrounding environ-
ment corresponds to an eigensolution of a lin-
earized self-consistent Vlasov}Maxwell equation.
The number of eigenfunctions is 2(2b#1) and they
turn out to be given by

exp($in
0
/)Ca(/) (a"0,$1,$2,2$b). (2)

This corresponds to a carrier wave, exp($in
0
/),

modulated by the envelope function Ca , where

Ca(/)"[2p(2b#1)]~1@2
b
+

l/~b

exp[il(/!/a)] (3a)

"[2p(2b#1)]~1@2
sin[(b#1/2)(/!/a )]

sin[(/!/a)/2]

(3b)

with

/a,l
W

a/2. (4)

The 2b#1 envelope functions, Ca , are distributed
symmetrically around the ring; the spacing between
the center of the neighboring envelope functions is
l
W

/2, half the wakelength.
The modulation functions (3) are precisely the

interpolating functions of the Shannon}Whittaker
sampling theory generalized to the case of `peri-
odica band-limited functions [4]. However, the
sampling theorem was not used in Ref. [3]. We
shall make explicit use of the theorem in this paper,
and by doing so the mathematical structure of the
model becomes more transparent and many of the
approximation schemes used in Ref. [3] are greatly
simpli"ed.

This paper is organized as follows: In Section 2,
we recapitulate the results of the Ref. [3]. We also
introduce in this section the sampling theorem and
the Karhunen}LoeH ve problem for the band-limited

shot noise F. It turns out that the functions (3)
above are also the eigenfunctions of the Kar-
hunen}LoeH ve problem. In Section 3, we deal with
the dynamic problem represented by the self-con-
sistent Vlasov}Maxwell equations. We reduce the
linearized Vlasov}Maxwell equations into a simple
closed-loop integral equation for the band-limited
component J of the electron beam current I. The
closed-loop equation is a linear equation on
a 2b#1 dimensional modulation space M

b
. In

Section 4, we show that the kernel of the closed-
loop equation is precisely the linear operator in the
Karhunen}LoeH ve problem. In other words, the ker-
nel is the "rst-order correlation function SFFHT
of the band-limited shot noise. This is the reason for
the simplicity of the model. The autocorrelation
function of the radiation power is considered in
Section 5. It was shown in Ref. [3] that the "rst-
order correlation problems of this model reduce to
the corresponding "rst-order correlation problems
of the coherent modes. This remains true for the
second-order correlation problems. We show that
the Hanbury}Brown Twiss self-bunching relation
for the chaotic photons [5] applies to the coherent
states of this model. We also "nd a simple result for
the correlation function of the total radiation
power in the case of a #at but bunched beam. In
Section 6, we show that the coherent-mode shot
noise is a complex Gaussian random variable. In
Section 7, we introduce a Wigner distribution and
in Section 8, we de"ne an entropy-like quantity to
characterize the coherence of the instability.

2. Preliminaries

2.1. Impedance, passband and baseband

The model impedance used in Ref. [3] is assumed
to be constant in a passband centered at a fre-
quency $n

0
with a bandwidth *n"2b#1. For

n'0, the model impedance is de"ned by

Z
n
"G

ZM if n
0
!b4n4n

0
#b

ZM H if !n
0
!b4n4!n

0
#b

0 otherwise.

(5)
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The impedance in the positive frequency and the
negative frequency parts of the passbands are re-
lated by Z

~n
"ZH

n
. A convenient quantity

;M ,!in
0
ZM is also introduced.

The coherent motion of the beam is self-ampli-
"ed through the interaction with the impedance
which is present only in the passband. However, it
is convenient to down convert the problem at hand
mathematically from this passband to the asso-
ciated baseband Mn D n"0,$1,$2,2,$bN. We
introduce a "nite dimensional function space M

b
,

the modulation space, corresponding to the
baseband.M

b
is de"ned to be the space spanned by

the basis B
1
"Mexp(il/) D l"0,$1,$2,2,$bN.

An alternative basis B
2
"MCa(/) D a"0, $1,

$2,2,$bN of M
b

turns out to be very useful,
where the function Ca has been introduced in the
introduction. Both B

1
and B

2
are complete ortho-

gonal sets in the space M
b
. Therefore, taking into

account the normalization constants, we have the
following three integral kernel representations of
the projection operator Q for the space M

b
:

Q(/!/@)"
1

2p

b
+

l/~b

exp[il(/!/@)] (6a)

"

b
+

a/~b

Ca(/)Ca(/@) (6b)

"S
2b#1

2p
C
0
(/!/@). (6c)

The projection operator Q will be used extensively
below.

Whereas the member functions exp(il/) of
B

1
are spread throughout the entire ring, the

member functions Ca(/) of B
2

have the attractive
property that they are concentrated in the neigh-
borhood of /a ; the exponential function exp(il/)
represents a monochromatic oscillation, and
Ca represents a modulation with "nite bandwidth
2b#1. It turns out [1,2,6] that the function
exp(il/) is not a eigenfunction of the microwave
instability problem unless the electron beam is
a coasting beam; however, the function Ca is the
modulation function of an eigenfunction for any
bunched beam in the microwave-coherent motion
limit (1). We note that the role of Q(/!/@) inside

the space M
b

is similar to the role played by the
periodic delta function d(/!/@) in the whole space
of all periodic functions.

Having de"ned M
b

to be the space of periodic
functions on the baseband, let us discuss now the
function space corresponding to the passband of Z.
De"ne exp (in

0
/)?M

b
to be the space spanned by

Mexp (in
0
/#il/) D l"0,$1,$2,2,$bN. This is

the function space corresponding to the positive
frequency part of the passband. Similarly, the func-
tion space corresponding to the negative frequency
part of the passband is given by exp(!in

0
/)?M

b
which is de"ned to be the space spanned by
Mexp(!in

0
/#il/) D l"0,$1,$2,2,$bN.

Let us end this part of the paper by introducing
some mathematical theorems concerning the
modulation space M

b
. Firstly, we introduce the

sampling theorem [4,7] since it plays a crucial role
in this paper.

Sampling Theorem: Any function g3M
b

can be ex-
panded in terms of the basis B

2
:

g(/)"
b
+

a/~b

g6 aCa(/) with g6 a"P
p

~p

d/g(/)Ca (/).

(7)

The theorem states that

g6 a"S
2p

2b#1
ga , where ga,g(/a). (8)

Secondly, we draw attention to the following very
useful integral

P
p

~p

d/Ca1 (/)Ca2 (/)2Can (/)

"A
2b#1

2p B
(n~2)@2

da1a2 da1a32da1an . (9)

The Ca are the generalization of Shannon's sinc
functions to our case of periodic boundary condi-
tions.

2.2. Shot noise

The electron beam current distribution at time
t is denoted by I(/, t), and the microwave coherent
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motion is assumed to be initiated by the shot noise
inherent in the electron beam. The initial current, I,
consisting of N particles is given by

I(/, t"0)"eNu
0
F(/) (10)

with the shot noise represented by

F(/)"
1

N

N
+
j/1

d(/!/
j
) (11)

where d(/) is a periodic delta function of period 2p,
and the individual initial electron positions /

j
's are

assumed to be independent and randomly distrib-
uted with a weight function o(/

j
). The function o(/)

has "nite bandwidth proportional to 1/p, e.g.
o(/)Jexp(!/2/2p2). It is very useful to de"ne the
projection of this function onto the space M

b
:

o(b)(/),P
p

~p

d/Q(/!/@)o(/@). (12)

From this de"nition and the assumption l
W
;p

(see Introduction) we conclude that

o(b)(/)Ko(/). (13)

This is our primary approximation. In the rest of
this paper, o(/) will always be replaced by o(b)(/).
Various approximation schemes used in Ref. [3]
are consequences of the basic approximation in Eq.
(13) combined with the sampling theorem.

The function F(/) is a stochastic variable whose
dependence on /

1
,/

2
,2,/

N
is understood. The

average of any stochastic quantity `Aa which de-
pends on /

1
,/

2
,2,/

N
is given by

SAT,
N
<
j/1

Pd/
j
o(/

j
)AP

N
<
j/1

Pd/
j
o(b)(/

j
)A (14)

where the approximation (13) has been used. Thus

SF(/)T"o(b)(/). (15)

The function o(/)+o(b)(/) is normally referred to
as the line density. This describes the electron beam
of bunch length p in equilibrium. As a consequence,
the function

f(/),F(/)!SF(/)T"F(/)!o(b)(/) (16)

describes the initial perturbation on the beam. This
function has the desired property that

SfT"0 and P
p

~p

d/f(/)"0. (17)

The last equality amounts to the statement that no
electrons are created by the initial beam perturba-
tion.

Finally, we introduce the band-limited shot noise
F(/) and FH(/). Since the model impedance (5) is
passband limited, only the component of the shot
noise in this passband contribute to the startup and
evolution of the microwave instability. It is conve-
nient to map this component into the modulation
space M

b
, (`down convert to the basebanda). The

mapping of the positive frequency part of the pas-
sband is

F(/),P
p

~p

d/@ exp(!in
0
/@)Q(/!/@)F(/@) (18)

and the mapping of the negative frequency part is

FH(/),P
p

~p

d/@ exp(in
0
/@)Q(/!/@)F(/@). (19)

Note that F and FH are complex random vari-
ables since they depend implicitly on /

1
,/

2
,2,/

N
.

Also, they are members of the modulation space
M

b
because Q is the projection operator for M

b
.

Since

P
p

~p

d/@Q(/!/@) exp(!in
0
/@)o(b)(/@)"0 (20)

the equilibrium part o(b)(/) of F does not contribute
to the integral (18), and (18) is equivalent to

F(/)"P
p

~p

d/@ exp(!in
0
/@)Q(/!/@)f(/@). (21)

In other words, only the perturbed part of the shot
noise contributes to the band-limited shot noise. As
mentioned earlier, we need only deal with F and
FH in the startup problem of the microwave insta-
bility.
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2.3. First-order correlation of the shot noise and the
Karhunen}LoeH ve problem

The "rst-order correlation function of the shot
noise is de"ned by

G(1)(/,/@)"SF(/)F(/@)T. (22)

It is straight forward to verify, using Eqs. (11) and
(14), that

G(1)(/,/@)"G(1)
1

(/,/@)#G(1)
2

(/,/@) (23)

where

G(1)
1

(/,/@)"
1

N
o(b)(/)d(/!/@) (24)

G(1)
2

(/,/@)"
N!1

N
o(b)(/)o(b)(/@). (25)

Also, from Eqs. (16) and (14)

S f (/) f (/@)T"
1

N
o(b)(/)d(/!/@)

!

1

N
o(b)(/)o(b)(/@). (26)

We next project out the contribution to G(1) from
the band-limited shot noise F and FH:

SF(/)F(/@)T

"P
p

~p
P

p

~p

d/AdpA@ exp[!in
0
(/A#/A@)]

]Q(/!/A)Q(/@!/A@)G(1)(/A,/A@) (27)

and

SF(/)FH(/@)T

"P
p

~p
P

p

~p

d/AdpA@ exp[!in
0
(/A!/A@)]

]Q(/!/A)Q(/@!/A@)G(1)(/A,/A@). (28)

Because of the relation (20), G(1)
2

does not contrib-
ute to the integrals (27) and (28). As a consequence,

for the treatment of the microwave instability, the
following approximation is adequate:

G(1)(/,/@)+G(1)
1

(/,/@)"
1

N
o(b)(/)d(/!/@). (29)

From Eq. (29) we conclude that the initial shot
noise is characterized by a white noise stochastic
process which by de"nition has a correlation length
equal to zero [8].

The results of the integrations (27) and (28) are

SF(/)F(/@)T"SFH(/)FH(/@)T"0 (30)

and

SF(/)FH(/@)T

"

1

N P
p

~p

d/AQ(/!/A)Q(/@!/A)o(b)(/A) (31a)

"

1

NS
2b#1

2p

b
+

a/~b

o6 (b)a Ca(/)Ca (/@) (31b)

"

1

N

b
+

a/~b

o(b)a Ca (/)Ca(/@) (31c)

where the sampling theorem (8) is used to obtain
Eq. (31c) from Eq. (31b).

Eq. (31) displays the band-limited "rst-order cor-
relation function of the initial shot noise. Note that
now the correlation length, which had been zero
prior to the band-limiting operation, is now "nite
and equal to the wakelength l

W
. This becomes

transparent for a coasting beam where o(b)a "1/2p
and Eq. (31) reduces to Q(/!/@).

Eq. (31c) states that the correlation function
SFFHT treated as an operator on M

b
is diagonal-

ized by the base B
2
. In other words,

P
p

~p

d/@SF(/)FH(/@)TCa (/@)"
1

N
o(b)a Ca (/). (32)

This is precisely the solution of the Karhunen}Lo-
eH ve problem [5,8] for the band-limited shot noise
F. Thus, an expansion like (7) is an Kar-
hunen}LoeH ve expansion with respect to the band-
limited shot noise. The importance of Ca , from the
point of view of the theory of random noise lies in
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the fact that the diagonalized expression (31c) em-
bodies explicitly all the "rst-order correlation prop-
erties of the band-limited shot noise.

It is useful to introduce a Karhunen}LoeH ve ex-
pansion for the band-limited shot noise F itself

F(/)"
b
+

a/~b

FM aCa(/). (33)

We refer to the expansion coe$cient FM a as the
coherent-mode shot noise. It is given by

FM a"Pd/F(/)Ca(/) (34a)

"Pd/Ca (/) exp(!in
0
/) F(/). (34b)

Eq. (34b) together with Eqs. (30) and (31) give the
following important relations:

SFM aFM bT"0

SFM HaFM HbT"0

SFM aFM HbT"G(1)a dab (35)

where

G(1)a ,SDFM a D2T"o(b)a /N. (36)

We have the critical result that the coherent mode
shot noise Fa are statistically uncorrelated. The
band-limited version of the "rst-order correlation
function of the initial shot noise can then be written
as

G(1)(/,/@)"SF(/)FH(/@)T (37)

"

b
+

a/~b

G(1)a Ca (/)Ca (/@). (38)

Let us end this section by considering the power
associated with the band-limited shot noise F. The
quantity

PF(/),SDF(/)D2T (39)

is proportional to the power density associated
with F. This equation together with Eq. (31) gives

PF(/)"
1

N

b
+

a/~b

o(b)a C2a (/). (40)

The corresponding total power is

PF"P
p

~p

d/PF(/) (41)

"

b
+

a/~b

G(1)a (42)

where G(1)a is given by Eq. (36). Thus, G(1)a is the
band-limited shot noise power in the localized
mode a, and the normalized quantity

G(1)a N+
b
G(1)b "o(b)a N+

b
o(b)b (43)

can be considered to be the relative probability that
the a mode of the band-limited shot noise is excited.
We will expand on this idea further in a later
section concerning entropy.

3. Simpli5cation of the Vlasov}Maxwell equations

In Ref. [3] the linearized self-consistent
Vlasov}Maxwell equations for the microwave in-
stability were reduced to a Fredholm integral equa-
tion for the perturbed electron current distribution

I$ (/, t)"io(b)(/)P
p

~p

d/@ [;M exp(in
0
(/!/@)#c.c.]

]Q(/!/@) I(/@, t) (44)

where i"eau2
0
I
!7

/E
0

and I
av
"eNu

0
/2p. The in-

itial condition is IQ (/,0)"0 with IQ (/, t),LI(/, t)/Lt.
To proceed, we introduce some important sim-

plifying notation,

I(/, t)"exp(in
0
/) J(/, t)

#exp(!in
0
/)JH(/, t)#Ix (/, t) (45)
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where J, and JH3M
b

are band-limited functions
and Ix represents that portion of I orthogonal to the
spaces exp (in

0
/)?M

b
and exp (!in

0
/)?M

b
.

Clearly,

J(/, t)"P
p

~p

d/@ e~*n0({Q(/!/@) I(/@, t). (46)

Let us obtain some expressions for J and Ix .
Substituting Eq. (45) into Eq. (44) and doing the
integrals, we obtain

I$ (/, t)"io(b)(/) [;M exp(in
0
/)J(/, t)#c.c.].

Using Eq. (46),we can project J from I on the
left-hand side of above equation. The result is

J$ (/, t)"i;M P
p

~p

d/@Q(/!/@)o(b)(/@)J(/@, t). (47)

It is also straightforward to obtain

I$
C
(/, t)"[i;M exp (in

0
/)o(b)(/)J(/, t)

!exp(in
0
/)J$ (/, t) ]#c.c. (48)

In Eq. (47), the second time derivative of J is
expressed in terms of J alone, Ix is not involved in
this equation. This equation will be referred to as
the `self-consistent band-limited closed-loop equa-
tiona, or the `closed-loop equationa in short. On
the other hand, Eq. (48) expresses the second time
derivative of Ix in terms of J; there is no dependence
on Ix on the right-hand side. Once J is known, Ix can
be determined from Eq. (48) through direct integra-
tions. We refer to this equation as the `mode-
coupling equationa. The need for discussing the
mode-coupling equation will not rise in the rest of
this paper.

We reduced in this section the linearized
Vlasov}Maxwell equations to a simple `closed-
loop equationa in the space M

b
. We discuss this

simpli"ed equation in the next section.

4. Diagonalization of the self-consistent closed-loop
equation

We solve the closed-loop equation (47) in this
section. Particularly, we relate the kernel of this
equation to the diagonalized correlation function
(31) of the band-limited shot noise F. In doing so,

the inherent reason of the simplicity of this model
becomes apparent.

Since J3M
b
, and Q is the projection operator for

the space M
b
, we have J"QJ, or equivalently

J(/@, t)"P
p

~p

d/AQ(/@!/A)J(/A, t). (49)

Substituting this equation into Eq. (47), we obtain

J$ (/, t)"i;M P
p

~p

d/AP
p

~p

d/@Q(/!/@)Q(/@

!/A)o(b)(/@)J(/A, t). (50)

Using Eq. (31a) and Q(/@!/A)"Q(/A!/@) on
the last equation, we obtain

J$ (/, t)"i;M NP
p

~p

d/ASF(/)FH(/A)TJ(/A, t). (51)

The kernel of the closed-loop equation turns out
to be the "rst-order correlation function of the
band-limited shot noise F. Therefore, the solution
to the equation can be obtained just by Kar-
hunen}LoeH ve expanding J with respect to this
noise. This is the reason why the present model
which was "rst discussed in Ref. [3] was so simply
`solvablea.

Eq. (51) can be written as

J$ (/, t)"i;M P
p

~p

d/@
b
+

a/~b

o(b)a Ca (/)Ca(/@)J(/@, t).

(52)

We "rst solve this equation as an eigenvalue prob-
lem. To this end, we introduce a Karhunen}LoeH ve
expansion for J:

J(/, t)"
b
+

a/~b

JM a(t)Ca (/) (53)

where

JM a(t)"P
p

~p

d/J(/, t)Ca(/) (54a)

"P
p

~p

d/Ca (/) exp(!in
0
/)I(/, t) (54b)

and substitute Eq. (53) into Eq. (52). The result is

JM$ a"i;M o(b)a JM a . (55)
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2For the quantity JM a (0) in this paper, the notation I(0)a was
used in Ref. [2].

Thus the eigensolution is

JM a(t)&exp($i)at) (56)

with

X2a"!i;M o(b)a . (57)

In order to solve the initial value problem, we
combine the above results with the initial condition
IQ (/,0)"0. The result is2

JM a(t)"JM a(0) cosXat. (58)

The initial value JM a(0) is related to the coherent-
mode shot noise FM a . Using the transformations
(34b) and (54b) together with the relation (10), we
have

JM a(0)"eNu
0
FM a . (59)

We have thus found the solution to the initial value
problem.

Using the results of Eqs. (35), (58), and (59) it can
be shown that the "rst-order correlation function
for the band-limited current is given by

J(1)(/,/@, t)"SJ(/, t)JH(/@, t)T (60)

"(eNu
0
)2

b
+

a/~b

G(1)a DcosXatD2Ca(/)Ca(/@).

(61)

The above results have been used in Ref. [3] to
calculate the radiation power resulting from the
microwave instability when the passband of the
impedance is above the beam pipe-cuto! frequency.
Instead of repeating the detailed discussion on
these subjects, let us list here some of the radiation-
power-related results needed for the following dis-
cussions.

The total power is

P
505

(t)"P
p

~p

d/P(/, t) (62)

where

P(/, t)"
(eNu

0
)2

2p
+
a,b

[ZM FM a FM Hb cosXat cosXHb t

#c.c.]Ca(/)Cb (/). (63)

Doing the integration of (62), we obtain

P
505

(t)"+
a

Pa (t) (64)

where

Pa(t)"P(0)a D cosX
a
t D2 (65)

P(0)a "I2
!7

4pRM DFM a D2, (66)

the average current I
!7
,eNu

0
/2p, and RM is the

resistive part of ZM . Note that the above P's are all
random variables. From Eqs. (65) and (66)

SPa(t)T"SP(0)a T DcosXat D2 (67)

and

SP(0)a T"I2
!7

4pRM G(1)a (68)

where the coherent-mode shot noise power G(1)a has
been given in Eq. (36).

For completeness we include the ensemble aver-
aged quantities,

SP(/, t)T"RM
(eNu

0
)2

pN

b
+

a/~b

o(b)a DcosXatD2C2a (/) (69)

SP
505

(t)T"RM
(eNu

0
)2

pN

b
+

a/~b

o(b)a DcosXatD2. (70)

5. The correlation function of the radiation power

We treat in this section the autocorrelation func-
tion of the radiation power. Let us "rst relate the
correlation function of the total radiation power
P
505

to that of Pa . From Eqs. (64) and (65),

SP
505

(t)P
505

(t@)T"
b
+

a,b/~b

SP(0)a P(0)b T

]DcosXatD2 DcosXbt@D2. (71)

We "nd next the correlation function SP(0)a P(0)b T.
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5.1. Hanbury}Brown twiss relation for the coherent
states

We have found in the last section that the coher-
ent-mode radiation power SPaT is essentially equal
to the coherent-mode shot noise power G(1)a . We
relate now the correlation function SPaPbT to
G(1)a and G(1)b . From Eqs. (65) and (66), we have

SPa(t) Pb (t@)T"SP(0)a P(0)b TDcosXatD2 DcosXbt@D2 (72)

and

SP(0)a P(0)b T"(4pRM )2I4
!7
G(2)ab (73)

where

G(2)ab,SDFM a D2DFM b D2T. (74)

The quantity G(2)ab has been calculated in the appen-
dix. Using Eq. (A.16), Eq. (73) can be written as

SP(0)a P(0)b T"(4pRM )2 I4
!7

(1#dab)G(1)a G(1)b . (75)

Combining this equation with Eq. (68), we have

SP(0)a P(0)b T"(1#dab)SP(0)a TSP(0)b T. (76)

This equation together with Eqs. (72) and (65) give

SPa (t)Pb(t@)T
SPa(t)TSPb (t@)T

"(1#dab). (77)

SPaT and SPbT are not correlated when aOb, but
the right-hand sides of the last equation becomes
2 instead of 1 when a"b. This means that the
coherent states are "rst order coherent but not
second order coherent. Note the resemblance of the
last two equations to the well-known Han-
bury}Brown Twiss relation for the chaotic photons
[9,10]. It is signi"cant that the same self-bunching
relation applies to the coherent states.

5.2. A yat bunched beam

We apply here the above results to a bunched but
#at beam. A #at bunched beam with a bunch length

¸ is de"ned by

o(/)"G
1/¸ if !¸/24/(¸/2

0 otherwise
(78)

For the remainder of this section, we shall not
distinguish between o(b)(/) and o(/).

Recall that the ring circumference !p4/(p
is occupied by 2b#1 coherent modes. However, if
¸(n, only part of the 2b#1 coherent modes
overlap the bunched beam. Therefore, it is conve-
nient to de"ne a parameter `aa by

2a#1

2b#1
"

¸

2p
. (79)

Then, for such a bunch,

o(b)a (/)"G
1/¸ if DaD4a

0 if DaD'a.
(80)

By a routine combination of the above results, we
obtain for such a #at bunched beam

SP
505

(t)P
505

(t@)T
SP

505
(t)TSP

505
(t@)T

"1#
1

2a#1
. (81)

6. Statistical properties of the coherent-mode shot
noise

We have seen in the last section that the Han-
bury}Brown Twiss self-bunching relation applies
to the coherent state a. This leads us to suspect that
the coherent-mode shot noise FM a is a complex
Gaussian random variable (CGRV). We study this
issue in this section. Start from the de"nition (34b);
it can be rewritten as

FM a"
1

J2p(2b#1)

b
+

l/~b

exp(!il/a)Hl (82)

where

Hl"P
p

~p

d/ exp[!i(n
0
!l)/]F(/). (83)

Note that Hl is a random variable since it depends
on /

j
's. It will be shown below that it is a complex
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Gaussian random variable. This in turn implies
that FM a is a CGRV since a sum of CGRVs is itself
a CGRV.

Let us "rst consider the case when n
0
!l is an

even integer, namely n
0
!l"2n8 with integer n8 .

Using the wavelength j,2p(n
0
!l), Eq. (83) can

be written as

Hl"
1

N

n8 ~1
+

m/~n8
Hl,m (84)

where

Hl,m"NP
(m`1)j

mj
d/ exp(!2in8 /)F(/). (85)

Using Eq. (11), the above equation becomes

Hl,m"+
(j

exp(!2in8 /
j
) (86)

where the summation is over the /
j
's which lie in

the region of the integration [mj,(m#1)j] of the
preceding equation. When /

j
varies in this interval,

the exponent 2n8 /
j

of Eq. (86) varies by 2p. The
statistical property of Hl,m can be inferred readily
from these results. If the electron beam under con-
sideration is a coasting beam, then from
o(/)"1/2p"constant, the random variable /

j
's

are statistically distributed uniformly in this inter-
val. Therefore [5], Hl,m is a CGRV. Even though
the statistical distribution of /

j
is no longer a priori

uniform if the electron beam is a bunched beam
with bunch length p, the condition (1) of the "rst
section ensures us that it is uniform to the leading
order of j

0
/p, and Hl,m is a CGRV to the same

order. This conclusion together with Eq. (84) im-
plies that Hl is a CGRV.

Having studied the statistical property of
Hl when n

0
!l is an even integer, let us turn to the

case when n
0
!l is an odd integer, namely

n
0
!l"2n8 #1 with integer n8 . For this case

Hl"
1

N

n8
+

m/~n8
Hl,m (87)

where

Hl,m"NP
(m`1@2)j

(m~1@2)j
d/ exp(!i(2n8 #1)/)F(/). (88)

Using Eq. (11), the above equation becomes

Hl,m"+
(j

exp(!i(2n8 #1)/
j
) (89)

where the summation is over /
j
3[(m!1/2)j,

(m#1/2)j]. An argument similar to the one we
used for the even n

0
!l case leads us to the con-

clusion that Hl is also a CGRV when n
0
!l is

odd. That Hl is a CGRV for all l together with Eq.
(82) leads to the desired proof that FM a is a CGRV.
If the electron beam were uniformly distributed
around the ring, a so-called coasting beam, the
statistical properties of the electron beam would be
stationary and the FM a would be a complex Gaus-
sian random variables. In this section, we have
reached the important conclusion that in spite of
the fact that the bunched electron beam is not
`stationarya in the global sense /3[!p,p], the
bunched beam can be considered as `stationarya to
order j

0
/n

0
if condition (1) is satis"ed, this in es-

sence is the key assumption in our model of the
microwave instability.

From Eqs. (17), (21) and (34a), we have that
SFM aT"SFM HaT"0. It is well known that the prob-
ability density function for a complex Gaussian
random variable with zero mean is given by
a Gaussian distribution that in this case becomes

P(ReFM a ,ImFM a)"
N

po(b)a
expC

!DFM a D2N
o(b)a D. (90)

The moments of the distribution yield,

SDFM a D2kT"k!SDFM a D2Tk"k!A
o(b)a
N B

k
. (91)

It can be seen that these moments are consistent
with the results in Eq. (36) for k"1 and Eq. (75) for
k"2 with a"b.

7. Wigner distribution function

The Wigner distribution function can be intro-
duced to yield a quasi- probability density in both
the angular position (/) and its Fourier conjugate
(l) [11,12]. For a stochastic process the Wigner
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Fig. 1. Plot of=a(/,l) as given in Eq. (95) with a"0 and b"5.

distribution function is de"ned in terms of the "rst-
order correlation function [12],

=(/,l, t)"P
p

~p

J(1)(/#m/2,/!m/2, t)e~*lmdm.

(92)

Substituting from Eq. (61) the Wigner function can
be written as a sum over the coherent modes

=(/,l, t)"
(eNu

0
)2

N

b
+

a/~b

o(b)a DcosXatD2=a(/,l) (93)

where

=a (/,l)"P
p

~p

Ca(/#m/2)Ca(/!m/2)e~*lm dm. (94)

Note that all the time dependence is contained in
DcosXatD2, the expression in Eq. (94) is independent
of time. This expression can be simpli"ed by using
Eq. (3a) for the de"nition of Ca (/) and carrying out
the subsequent cumbersome, but straightforward,
integration over m:

=a (/,l)"
1

(2b#1) sin[(/!/a)]

]A
sin[(2b!2DlD#1)(/!/a)]

#4
p

b~1
+
k/0

(~1)k~l(1`2k)
(1`2k)2~4l2

sin[(b!k)2(/!/a )]B (95)

for !b4l4b and =a(/,l)"0 otherwise.
In Fig. 1 we display a plot of =a (/,l) for a"0

and b"5. As expected,=
0
(/,l) peaks in the neigh-

borhood of /"/a"0 and is non-zero only in the
range !54l45.

For the special case of a coasting beam, where all
the eigenvalues are the same, all the summations in
Eq. (93) can be done and the Wigner distribution
function takes a particularly simple form

=(/,l, t)"G
(eNu0 )2
2pN

DcosXtD2 !b4l4b

0 otherwise.
(96)

From the generalized Wigner distribution func-
tion de"ned in Eq. (93) we can obtain the so-called
marginal distribution functions

U(/, t),
b
+

l/~b

=(/,l, t) (97a)

"2pJ(1)(/,/, t) (97b)

"2p
(eNu

0
)2

N

b
+

a/~b

o(b)a DcosXatD2C2a (/) (97c)

and

W(l, t)"P
p

~p

=(/,l, t) d/ (98a)

"G
2p

2b#1

(eNu
0
)2

N

b
+

a/~b

o(b)a DcosXatD2 !b4l4b

0 otherwise.

(98b)

The marginal distribution '(/, t) can be related
to the ensemble averaged power given in Eq. (69) as
follows:

SP(/, t)T"
RM

2p2
U(/, t). (99)
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If we integrate Eq. (97) over / or sum (98) over
l we obtain the normalization for the Wigner distri-
bution function,

&(t),P
p

~p

U(/, t) d/"

b
+

l/~b

W(l, t)

"2p
(eNu

0
)2

N

b
+

a/~b

o(b)a DcosXatD2. (100)

The normalization for the Wigner distribution
function &(t) can be related to the ensemble aver-
aged total power given in Eq. (70) as follows:

SP
505

(t)T"
RM

2p2
&(t). (101)

8. Entropy

Once again paralleling the analysis for coherent
light we can de"ne an entropy-like quantity as
follows [13]:

H(t),!+
a

)a(t) log)a(t) (102)

where

)a(t),
o(b)a DcosXatD2

+
b

o(b)b DcosXbtD2
. (103)

Physically, )a(t), is the relative probability that
a given coherent mode Ca(/) is excited.

It is of interest to consider what is the form of the
)a (0) which maximizes and minimizes the entropy
subject to the constraint that +a)a (0)"1. It is
straightforward to prove that, H

.*/
"0 if there is

a single coherent mode present on the electron
beam as there is no uncertainty as to which mode
this system is in. In contrast, H

.!9
(0)"

log (2b#1), if the electron beam is uniform,
o(b)a "1/2p for all a; the entropy is a maximum as
the state of the electron beam is most uncertain. In
both of these cases the entropy is independent of
time. This is in contrast to a Gaussian electron
bunch, where many modes are initially excited;

however, the entropy will decrease toward zero
with time as the mode with the largest growth rate
tends to dominate. It can be seen that the entropy is
the logarithm of the number of coherent modes
excited on the beam. In this sense the entropy is
also a measure of the `coherencea of the instability,
lower entropy implies greater coherence.

9. Conclusion

We characterized the microwave instability by
a model in which the initial electron beam is as-
sumed to be shot noise which interacts with a con-
stant bandpass impedance in a circular accelerator
with periodic boundary conditions. Our analysis
applies to the case of a bunched electron beam
provided that the wavelength of the disturbance on
the beam, the wakelength associated with the
model impedance and the electron bunch length
satisfy the constraint given in Eq. (1).

The model impedance acts as a "lter which ban-
dlimits the initial shot noise. Once the problem is
restricted to the space of band-limited functions
one can use the Shannon sampling theorem to
expand all relevant quantities in terms of periodic
band-limited interpolation functions, which we
have called coherent states, Ca (/). For our case, of
periodic boundary conditions on [!p,p], there
are a "nite number of coherent states equal to
2b#1, which is determined by the frequency
spread of the bandpass impedance. We have shown
that the Vlasov}Maxwell equations can be separ-
ated in space and time. The spatial portion reduces
to a Karhunen}LoeH ve eigenvalue equation of
band-limited noise. The associated spatial eigen-
functions are our coherent states and the eigen-
values are related to the localized density of the
electron beam. The temporal portion reduces to
simple harmonic motion with eigenvalues deter-
mined by the impedance and the localized density
of the electron beam.

The "rst- and second-order spatial correlation
functions of the electron density where calculated.
The initial shot noise is uncorrelated, meaning that
the "rst-order correlation function is characterized
by a delta function, d(/!/@). When the initial shot
noise `passes through the impedancea it introduces
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a "nite correlation length equal to the wakelength.
We have shown that the "rst-order correlation
function is diagonalized and is expressible as a sum
over our coherent state basis functions. Our cor-
relation function bears a striking resemblance to
the correlation function used in the theory of par-
tial coherence in optics [13]. Borrowing from this
theory we introduced an entropy like quantity as
a measure of the coherence of the instability.

The "rst-order correlation function of the elec-
tron density can be used to obtain a Wigner distri-
bution function. The power in the radiation can be
written in terms of the marginal distribution of this
Wigner distribution function.

In our consideration of the second-order correla-
tion function we obtained a relation similar to the
familiar Hanbury}Brown Twiss condition for the
coherent states. We "nd that the second-order cor-
relation function can simply be written in terms of
the "rst-order correlation function.

We have shown the coherent states, Ca(/), to be
an important tool for characterizing both the math-
ematical and physical aspects of the microwave
instability for our assumed model.

Appendix A. The second-order correlation function
of the shot noise

The second-order correlation function of the
shot noise F is de"ned by

G(2)(/
1
,/

2
,/

3
,/

4
),SF(/

1
)F(/

2
)F(/

3
)F(/

4
)T.

(A.1)

The performance of the averaging S2T above
according to the rule speci"ed in Section 2.1 leads
to

G(2)(/
1
,/

2
,/

3
,/

4
)"

5
+
j/1

G(2)
j

(/
1
,/

2
,/

3
,/

4
) (A.2)

where

G(2)
1

(/
1
,/

2
,/

3
,/

4
)"

1

N3
[d(!/

3
#/

1
)d(!/

4

#/
1
)d(/

1
!/

2
)o(b)(/

1
)]

(A.3)

G(2)
2

(/
1
,/

2
,/

3
,/

4
)"

(N!3)(N!2)(N!1)

N3
o(b)(/

3
)

]o(b)(/
4
)o(b)(/

1
)o(b)(/

2
) (A.4)

G(2)
3

(/
1
,/

2
,/

3
,/

4
)

"

(N!1)

N3
[d(/

1
!/

4
)d(/

3
!/

2
)o(b)(/

3
)

]o(b)(/
1
)# d(/

3
!/

4
)d(/

1
!/

2
)o(b)(/

3
)

]o(b)(/
1
)# d(/

1
!/

3
)d(#/

2

!/
4
)o(b)(/

1
)o(b)(/

2
)] (A.5)

G(2)
4

(/
1
,/

2
,/

3
,/

4
)

"

(N!1)

N3
[d(/

4
!/

1
)d(/

1
!/

2
)o(b)(/

3
)o(b)(/

1
)

# d(/
3
!/

1
)d(/

1
!/

2
)o(b)(/

4
)o(b)(/

1
)

# d(/
3
!/

1
)d(/

4
!/

1
)o(b)(/

1
)o(b)(/

2
)

# d(/
3
!/

2
)d(/

4
!/

2
)o(b)(/

1
)o(b)(/

2
)]

(A.6)

and

G(2)
5

(/
1
,/

2
,/

3
,/

4
)

"

(N!2)(N!1)

N3
[d(/

1
!/

2
)o(b)(/

3
)o(b)(/

4
)

]o(b)(/
1
)# d(/

3
!/

4
)o(b)(/

3
)o(b)(/

1
)

]o(b)(/
2
)# d(/

4
!/

1
)o(b)(/

3
)o(b)(/

1
)o(b)(/

2
)

# d(/
4
!/

2
)o(b)(/

3
)o(b)(/

1
)o(b)(/

2
)

# d(/
3
!/

1
)o(b)(/

4
)o(b)(/

1
)o(b)(/

2
)

# d(/
3
!/

2
)o(b)(/

4
)o(b)(/

1
)o(b)(/

2
)]. (A.7)

We calculate next the correlation function G(2)ab of
the localized shot noise power. It is de"ned by

G(2)ab,SDFM a D2DFM b D2T. (A.8)
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We have just seen above that the correlation func-
tion G(2) consists of "ve components. This together
with the de"nition of the coherent-mode shot noise
FM a given by Eq. (34b) imply that G(2) also consists
of "ve components

G(2)ab"
5
+
j/1

G(2)
j,ab (A.9)

where

G(2)
j,ab"C

4
<
k/1
P

p

~p

d/
kDG(2)

j
(/

1
,/

2
,/

3
,/

4
)Ca(/1

)Ca(/2
)

]Cb(/3
)Cb(/4

)e~*n0 ((1~(2 )e~*n0 ((3~(4 ).

(A.10)

Let us "rst calculate the third component G(2)
3

.
There are three contributions to G(2)

3
from, respec-

tively, the three terms on the right-hand side of Eq.
(A.5). The last term of Eq. (A.5) gives a contribution
proportional to

KP
p

~p

d/o(b)(/)Ca(/)Cb (/) exp(!2in
0
/)K

2
. (A.11)

This integral vanishes because (i) o(b), Ca and Cb are
all members of M

b
, and (ii) n

0
<b. The calculation

of the other two contributions gives

G(2)
3,ab"

N!1

N3
[(o(b)a dab )2#(o(b)a )2(o(b)b )2]. (A.12)

Taking the limit NPR, and using Eq. (36), the
above equation can be written in terms of the
average local mode noise power G(1)a as

G(2)
3,ab"(1#dab)G(1)a G(1)b . (A.13)

The other G(2)
j,ab 's can be calculated in a similar

way. We "nd

G(2)
2,ab"G(2)

4,ab"G(2)
5,ab"0 (A.14)

and

G(2)
2,ab"

1

N2

2b#1

2p
G(1)a dab . (A.15)

G(2)
2

is also negligible since it is smaller than G(2)
3

by
a factor of 1/N. We conclude that of the "ve compo-
nents of G(2), only G(2)

3
is appreciable and

G(2)ab+G(2)
3,ab"(1#dab)G(1)a G(1)b . (A.16)

We have seen in Eq. (29) that under the condition
(1), we have e!ectively

G(1)(/,/@)"
1

N
o(b)(/)d(/!/@). (A.17)

Eq. (A.16) amounts to setting

G(2)(/
1
,/

2
,/

3
,/

4
)

"G(1)(/
1
,/

2
)G(1)(/

1
,/

2
)#G(1)(/

1
,/

3
)G(1)(/

2
,/

4
)

#G(1)(/
1
,/

4
)G(1)(/

2
,/

3
), (A.18)

with G(1) given by (A.17).
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